OPEN-CHAIN ALIPHATIC THIONES AND DIAZOMETHANE; REACTIONS OF 1,3,4-THIADIAZOLINES AND THIOCARBONYL YLIDES ¹

Grzegorz Mloston 2 and Rolf Huisgen

Institut für Organische Chemie der Universität München Karlstr. 23, D-8000 München 2, Federal Republic of Germany

Summary Diazomethane adds in two directions to $R_2C=5$, $R = ethyl$, propyl, isopropyl, $tert$ -butyl; the dependence of the regioisomer ratio on R and on solvent polarity discloses the nature of the orienting forces. The thione methylides generated by N₂ extrusion from 1,3,4-thiadiazolines undergo 1,4-H shift or electrocyclization.

According to an ab initio calculation $(3-21G^*)$, the polarity of the double bond in $H_2C=S$ is negligibly small, and the dipole moment must arise from $H-C$ polarity and the lone pair contribution.³ Both the carbon and sulfur atoms of thioketones are electrophilic.⁴ The product of adamantanethione and diazomethane showed two ¹H NMR singlets, and their assignment to the spiro-1,3,4-thiadiazoline $\frac{3}{2}$ and the 1,2,3-isomer was suggested by Krapcho et al.;⁵ the ratio of the regioisomers depends on solvent polarity and varies from 87:13 in petrol ether to 22:78 in methanol. $6\,$ We separated the regioisomeric cycloadducts and established their structures.⁷

We treated thioketones, $R_2C=S$, $R = e^{\frac{1}{2}}$, $propyl$, isopropyl, and $tert-bu$ tyl, in three solvents with gaseous diazomethane at 0°C and attributed the singlets at δ _H 5.54-5.82 to the 2,2-dialky1-1,3,4-thiadiazolines (1) and the more shielded ones at $4.75-4.77$ (CDCl₃) to the 1,2,3-isomers 2 (Table 1).

The high stereospecificity 8 and other mechanistic criteria 9 favor con certedness for the 1,3-dipolar cycloadditions of diazoalkanes to electrondeficient C=C bonds; additions of diazomethane to C=S bonds are probably likewise concerted. Thiones are "superdipolarophiles" as reported recently.¹⁰

The data of Table 1 allows one to disentangle some of the orienting forces. The decrease of the ratio $1/2$ with rising solvent polarity intimates that the transition states leading to the 1,2,3-thiadiazolines 2 are more polar than the ones furnishing 1. The dipole moments in the orientation complex producing 1 partially cancel each other, but reinforce on the pathway

Table 1. Cycloadditions of diazomethane to dialkyl thioketones at $0^{\circ}C$; ratio of regioisomeric thiadiazolines $1/2$ (¹H NMR analysis)

to 2; thus, the *eZectrostatic disadvantage* of 2 formation is mitigated in solvents of high polarity. The empirical parameters of solvent polarity, $\mathrm{E_{_{T}}}$, 11 indicate a small gap between pentane (32.4 kcal mol $^{-1})$ and diethyl ether (34.6), but a big one from the latter to methanol (55.5).

The linking of the substituted C-atoms in the formation of 2 is hindered by increasing *steric demands* of the thione substituent R. The ratio 1/2 rises – in methanol even dramatically – and the formation of <u>1</u> is uncontested for di-tert-butyl thioketone.

for $1/2$ = 13:87 in the case of diethyl thioketone + diazomethane in methano1 ? The *second-order term* **of** *the perturbation equation* contains the attrac-Both these effects favor 1. But which orienting influence is responsible tive forces in the transition state and is larger for the concerted formation of 2 than for 1. Thioformaldehyde shows AO coefficients of 0.68 (C) and -0.57 (S) in the π -LU, and the difference grows with C-alkylation (3-21G).¹² The terminal AO coefficients of the π -HO of diazomethane amount to 0.78 (C) and -0.61 (N).¹³ Thus, the C-C linking $(+) 2$) supplies the biggest product of coefficients. The interaction HO(diazomethane) - LU(thione) is probably dominant on the basis of MO energies. Moreover, the second FM0 pair contributes little to the regioselection, since A0 coefficients are smaller and more alike in $LU(CH_2N_2)$ and HO(thione).

Table 1 suggests that adamantanethione resembles diisopropyl thioketone in steric demand. Adamantanethione is still capable of forming a dimer 14 in contrast to the more hindered thiones like thiofenchone 15 and $\alpha,\alpha,\omega,\omega$ -tetramethylcycloalkanethiones.¹⁶ The latter combine with diazomethane furnishing 1,3,4-thiadiazolines only. The more bulky the substituents, the greater the stability of thiones in the monomeric state - and the less overpowering the odor.

In the course of the N₂ extrusion of 1,3,4-thiadiazolines - a 1,3-dipolar cycloreversion - 90' rotations about the two C-S bond axes give rise to the planar 4π bond system of the thiocarbonyl ylide. The N₂ elimination proceeds the faster, the better the resulting dialkyl-thione-S-methylide *approaches ptanarity.* This is easier for adamantanethione-S-methylide (4) than for 5 and 7 .

The half-reaction times of the following 1,3,4-thiadiazolines indicate that the transition states of N_2 loss decreasingly profit from the bond energy of the incipient S-methylides:

According to 'H NMR analysis (CDCl $_3)$ with standard, thermolysis of $\underline{1}$, R = CH(CH₃)₂ (mp -12 to -10°C), in toluene afforded enethiol ether <u>6</u> and thiirane $\frac{5}{2}$ in 65:35 ratio; due to losses on evaporation of the toluene, the yield is only 71%. In acetonitrile at 70°C, 8 is the major (80%) and 6 the minor product (11%). A symmetry-allowed *suprafacial* 1,4-H *shift* offers an attractive pathway for $5 \div 6$ with the *electrocyclization* $5 \div 8$ competing. When 5 was generated in methanol (12 h 60°C), 1 H NMR analysis indicated 91% of the $0, S$ dimethyl acetal 10, the methanol adduct.

Thick-layer chromatography allowed separation of 6 and 8 . Enethiol ether 6 is a colorless, intensely smelling oil (bp $90^{\circ}/10$). The 1 H NMR spectrum (CDC1₃) reveals an isopropyl group at 6 0.97 (d, J = 7 Hz) and 3.00 (sept), whereas singlets at 1.79, 2.02, 2.07 were recorded for the methyls at the unsaturated center and SCH₃. The olefinic C-atoms appear at δ_c 136.5 and 137.0, and SCH₃ as q at 23.5. The likewise oily thiirane 8 (bp $40\degree$ C/10) is characterized by 1_H doublets at δ 0.95 and 1.00 for diastereotopic pairs of methyl groups and by s 2.30 for $3-H_2$. The acetal 10 , δ_H 1.92 (SCH₃) and 3.30 (OCH₃), eliminated methanol on silica gel affording 6 .

The stabilization by 1,4-H shift is not open to di - $tert$ -butyl thioketone-S-methylide ($\overline{2}$). After decomposition of $\overline{1}$, R = C(CH₃)₃ (mp 64-65°C), in tolue-

ne at 100°C and removal of the solvent, the singlet at δ_H 2.34 (3-H₂) pointed to 73% of thiirane 9 (6 CH₃ s 1.15). When 7 was liberated from 1, R = $C(CH_3)_3$, in methanol at 110°C (1.5 h), acetal 11 was not found; 23% 9 constituted the only clearly defined product.

The difference in behavior of $1,3$ -dipoles 5 and 7 in cycloaddition reactions - following communication - reveals mechanistic divergences.

ACKNOWLEDGMENT

G.M. expresses his thanks to the Alexander von Humboldt Foundation for a stipend. We thank Mrs. Gisela Briintrup for skilled help in the experiments.

REFERENCES

- 1. *Dedicated to Professor Heinrich iVdth, Miinchen,* on the *occasion of h<s sixtieth birthday.*
- 2. Present address: Department of Organic Synthesis, Institute of Chemistry, University of Lodz, Poland.
- 3. Schleyer, P. von R.; we thank for a private communication.
- 4. Review: DUUS, F. Thiocarbonyl Compounds, in Comprehensive Organic Chem $istry$; Barton, D. and Ollis, W.D., Eds.; Pergamon Press: Oxford, 1979; Vol. 3, pp 373-487.
- 5. Krapcho, A.P.; Rao, D.R.; Silvon, M.P.; Abegaz, B. *J.Org.Chem.* **1971, 36, 3885.**
- 6. Krapcho, A.P.; Silvon, M.P.; Goldberg, I.; Jahngen, E.G.E. *J.Org.Chem. 1974, 39,* **860.**
- 7. Huisgen, R.; Mloston, G. *Tetrahedron iett. 1985, 26, 1049.*
- 8. Bihlmaier, W.; Geittner, J.; Huisgen, R.; Reissig, H.-U. *Heterocycles* **1978, 10, 147.**
- 9. Review: Huisgen, R. ?,3-Dipolar Cycloadditions Introduction, Survey, Mechanism, in *1,3-DipoZar CycZoaddition Chemistry;* Padwa, A., Ed.; Wiley: New York, 1984; Vol. 1, pp 1-176.
- 10. Huisgen, R.; Langhals, E. *Tetrahedron Lett.,* in press.
- 11. Reichardt, C. *Angew.Chem., Int.Ed.Engl. 179, 18, 98.*
- 12. Vedejs, E.; Perry, D.A.: Houk, K.N.; Rondan, N.G. *J.Am.Chem.Soc. 1983, 105, 6999.*
- 13. Houk, K.N.; Sims, J.; Duke, Jr., R.E.; Strozier, R.W.; George, J.K. *J.Am. Chem.Soc. 1973, 95, 7287.*
- 14. Greidanus, J.W. *Canad.J,Chem. 1970,* 48, *3530.*
- 15. Huisgen, R.: Mloston, G.; Prebstl, A. *Tetrahedron Lett. 1985, 26, 4431.*
- 16. Huisgen, R.; Langhals, E.; Mloston, G., Oshima, T.; Rapp, J. *Lectures in HeterocycZ.Chem., SuppZ. of J.HeterocycZ.Chem. 1987, 24, Sl.*
- 17. All new compounds described here gave satisfactory elemental analyses.

(Received in Germany 28 September 1989)