OPEN-CHAIN ALIPHATIC THIONES AND DIAZOMETHANE; REACTIONS OF 1,3,4-THIADIAZOLINES AND THIOCARBONYL YLIDES ¹

Grzegorz Mloston² and Rolf Huisgen*

Institut für Organische Chemie der Universität München Karlstr. 23, D-8000 München 2, Federal Republic of Germany

Summary Diazomethane adds in two directions to $R_2C=S$, $R = ethyl, propyl, isopropyl, tert-butyl; the dependence of the regionsomer ratio on R and on solvent polarity discloses the nature of the orienting forces. The thione-S-methylides generated by <math>N_2$ extrusion from 1,3,4-thiadiazolines undergo 1,4-H shift or electrocyclization.

According to an ab initio calculation $(3-21G^*)$, the polarity of the double bond in $H_2C=S$ is negligibly small, and the dipole moment must arise from H-C polarity and the lone pair contribution.³ Both the carbon and sulfur atoms of thicketones are electrophilic.⁴ The product of adamantanethione and diazomethane showed two ¹H NMR singlets, and their assignment to the spiro-1,3,4-thiadiazoline <u>3</u> and the 1,2,3-isomer was suggested by Krapcho et al.;⁵ the ratio of the regioisomers depends on solvent polarity and varies from 87:13 in petrol ether to 22:78 in methanol.⁶ We separated the regioisomeric cycloadducts and established their structures.⁷

We treated thicketones, $R_2C=S$, R = ethyl, propyl, isopropyl, and *tert*-butyl, in three solvents with gaseous diazomethane at 0°C and attributed the singlets at δ_H 5.54-5.82 to the 2,2-dialkyl-1,3,4-thiadiazolines (<u>1</u>) and the more shielded ones at 4.75-4.77 (CDCl₂) to the 1,2,3-isomers <u>2</u> (Table 1).

The high stereospecificity ⁸ and other mechanistic criteria ⁹ favor *concertedness* for the 1,3-dipolar cycloadditions of diazoalkanes to electrondeficient C=C bonds; additions of diazomethane to C=S bonds are probably likewise concerted. Thiones are "superdipolarophiles" as reported recently.¹⁰

The data of Table 1 allows one to disentangle some of the orienting forces. The decrease of the ratio 1/2 with rising solvent polarity intimates that the transition states leading to the 1,2,3-thiadiazolines 2 are more polar than the ones furnishing 1. The dipole moments in the orientation complex producing 1 partially cancel each other, but reinforce on the pathway

7045

Table 1. Cycloadditions of diazomethane to dialkyl thicketones at 0°C; ratio of regioisomeric thiadiazolines 1/2 (¹H NMR analysis)

$R_2 C =$	S Solvent	Pentane	Diethyl ether	Methanol	
R:	CH ₂ CH ₃	75:25	62:38	13:87	
	CH ₂ CH ₂ CH ₃	77:23	73:27	19:81	
	СН (СН ₃) 2	87:13	85:15	40:60	
	с (сн ₃) 3	100:0	100:0	100:0	
R ₂ C:	Adamantylidene	91:9	80:20	26:74	

to 2; thus, the *electrostatic disadvantage* of 2 formation is mitigated in solvents of high polarity. The empirical parameters of solvent polarity, $E_{\rm T}$,¹¹ indicate a small gap between pentane (32.4 kcal mol⁻¹) and diethyl ether (34.6), but a big one from the latter to methanol (55.5).

The linking of the substituted C-atoms in the formation of $\underline{2}$ is hindered by increasing *steric demands* of the thione substituent R. The ratio $\underline{1}/\underline{2}$ rises - in methanol even dramatically - and the formation of $\underline{1}$ is uncontested for di-*tert*-butyl thicketone.

Both these effects favor <u>1</u>. But which orienting influence is responsible for 1/2 = 13:87 in the case of diethyl thioketone + diazomethane in methanol ? The *second-order term of the perturbation equation* contains the attractive forces in the transition state and is larger for the concerted formation of <u>2</u> than for <u>1</u>. Thioformaldehyde shows AO coefficients of 0.68 (C) and -0.57 (S) in the π -LU, and the difference grows with C-alkylation (3-21G).¹² The terminal AO coefficients of the π -HO of diazomethane amount to 0.78 (C) and -0.61 (N).¹³ Thus, the C-C linking (+ <u>2</u>) supplies the biggest product of coefficients. The interaction HO(diazomethane) - LU(thione) is probably dominant on the basis of MO energies. Moreover, the second FMO pair contributes little to the regioselection, since AO coefficients are smaller and more alike in LU(CH₂N₂) and HO(thione).

Table 1 suggests that adamantanethione resembles diisopropyl thioketone in steric demand. Adamantanethione is still capable of forming a dimer ¹⁴ in contrast to the more hindered thiones like thiofenchone ¹⁵ and $\alpha, \alpha, \omega, \omega$ -tetramethylcycloalkanethiones.¹⁶ The latter combine with diazomethane furnishing 1,3,4-thiadiazolines only. The more bulky the substituents, the greater the stability of thiones in the monomeric state - and the less overpowering the odor.

In the course of the N₂ extrusion of 1,3,4-thiadiazolines - a 1,3-dipolar cycloreversion - 90° rotations about the two C-S bond axes give rise to the planar 4π bond system of the thiocarbonyl ylide. The N₂ elimination proceeds the faster, the better the resulting dialkyl-thione-S-methylide approaches planarity. This is easier for adamantanethione-S-methylide (<u>4</u>) than for <u>5</u> and <u>7</u>.

The half-reaction times of the following 1,3,4-thiadiazolines indicate that the transition states of N_2 loss decreasingly profit from the bond energy of the incipient S-methylides:

<u>3</u>		$t_{1/2} = 7$	78	min	at	40°C, 32 min at 46°C in xylene
		10	8(min	at	40°C in acetonitrile;
<u>1</u> ,	R =	Сн(Сн ₃) 2	24	min	at	70°C in toluene,
		3 2 3	80	min	at	70°C in acetonitrile;
1,	R =	с(сн ₃) ₃ 2	29	min	at	100°C in xylene.

According to ¹H NMR analysis (CDCl₃) with standard, thermolysis of <u>1</u>, R = CH(CH₃)₂ (mp -12 to -10°C), ¹⁷ in toluene afforded enethiol ether <u>6</u> and thiirane <u>8</u> in 65:35 ratio; due to losses on evaporation of the toluene, the yield is only 71%. In acetonitrile at 70°C, <u>8</u> is the major (80%) and <u>6</u> the minor product (11%). A symmetry-allowed suprafacial 1,4-H shift offers an attractive pathway for <u>5</u> + <u>6</u> with the *electrocyclization* <u>5</u> + <u>8</u> competing. When <u>5</u> was generated in methanol (12 h 60°C), ¹H NMR analysis indicated 91% of the *0*,*S*dimethyl acetal 10, the methanol adduct.

Thick-layer chromatography allowed separation of <u>6</u> and <u>8</u>. Enethiol ether <u>6</u> is a colorless, intensely smelling oil (bp 90°/10). The ¹H NMR spectrum (CDCl₃) reveals an isopropyl group at δ 0.97 (d, J = 7 Hz) and 3.00 (sept), whereas singlets at 1.79, 2.02, 2.07 were recorded for the methyls at the unsaturated center and SCH₃. The olefinic C-atoms appear at $\delta_{\rm C}$ 136.5 and 137.0, and SCH₃ as q at 23.5. The likewise oily thiirane <u>8</u> (bp 40°C/10) is characterized by ¹H doublets at δ 0.95 and 1.00 for diastereotopic pairs of methyl groups and by s 2.30 for 3-H₂. The acetal <u>10</u>, $\delta_{\rm H}$ 1.92 (SCH₃) and 3.30 (OCH₃), eliminated methanol on silica gel affording <u>6</u>.

The stabilization by 1,4-H shift is not open to di-tert-butyl thicketone-S-methylide (7). After decomposition of 1, $R = C(CH_3)_3$ (mp 64-65°C), in toluene at 100°C and removal of the solvent, the singlet at $\delta_{\rm H}$ 2.34 (3-H₂) pointed to 73% of thiirane 9 (6 CH₃ s 1.15). When 7 was liberated from 1, R = C(CH₃)₃, in methanol at 110°C (1.5 h), acetal <u>11</u> was not found; 23% 9 constituted the only clearly defined product.

The difference in behavior of 1,3-dipoles 5 and 7 in cycloaddition reactions - following communication - reveals mechanistic divergences.

ACKNOWLEDGMENT'

G.M. expresses his thanks to the Alexander von Humboldt Foundation for a stipend. We thank Mrs. Gisela Brüntrup for skilled help in the experiments.

REFERENCES

- 1. Dedicated to Professor Heinrich Nöth, München, on the occasion of his sixtieth birthday.
- 2. Present address: Department of Organic Synthesis, Institute of Chemistry, University of Lodz, Poland.
- 3. Schleyer, P. von R.; we thank for a private communication.
- Review: Duus, F. Thiocarbonyl Compounds, in Comprehensive Organic Chemistry; Barton, D. and Ollis, W.D., Eds.; Pergamon Press: Oxford, 1979; Vol. 3, pp 373-487.
- 5. Krapcho, A.P.; Rao, D.R.; Silvon, M.P.; Abegaz, B. J. Org. Chem. 1971, 36, 3885.
- Krapcho, A.P.; Silvon, M.P.; Goldberg, I.; Jahngen, E.G.E. J. Org. Chem. 1974, 39, 860.
- 7. Huisgen, R.; Mloston, G. Tetrahedron Lett. 1985, 26, 1049.
- Bihlmaier, W.; Geittner, J.; Huisgen, R.; Reissig, H.-U. Heterocycles 1978, 10, 147.
- 9. Review: Huisgen, R. 1,3-Dipolar Cycloadditions Introduction, Survey, Mechanism, in 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; Vol. 1, pp 1-176.
- 10. Huisgen, R.; Langhals, E. Tetrahedron Lett., in press.
- 11. Reichardt, C. Angew. Chem., Int. Ed. Engl. 179, 18, 98.
- 12. Vedejs, E.; Perry, D.A.; Houk, K.N.; Rondan, N.G. J.Am. Chem. Soc. 1983, 105, 6999.
- 13. Houk, K.N.; Sims, J.; Duke, Jr., R.E.; Strozier, R.W.; George, J.K. J.Am. Chem.Soc. 1973, 95, 7287.
- 14. Greidanus, J.W. Canad.J.Chem. 1970, 48, 3530.
- 15. Huisgen, R.; Mloston, G.; Pröbstl, A. Tetrahedron Lett. 1985, 26, 4431.
- 16. Huisgen, R.; Langhals, E.; Mloston, G., Oshima, T.; Rapp, J. Lectures in Heterocycl.Chem., Suppl. of J.Heterocycl.Chem. 1987, 24, S1.
- 17. All new compounds described here gave satisfactory elemental analyses.

(Received in Germany 28 September 1989)